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The behaviour of non-wetting ganglia undergoing immiscible displacement in a 
porous medium is studied with the help of a theoretical simulator. The porous medium 
is represented by a network of randomly sized unit cells of the constricted-tube type. 
The fluid of a non-wetting ganglion is in contact with the wetting fluid at menisci 
which are assumed to be spherical cups. The flow in every constricted unit cell 
occupied by a single fluid is modelled as flow in a sinusoidd tube. The flow in every 
unit cell that contains a meniscus and portions of both fluids is treated with a 
combination of a Washburn-type analysis and a lubrication-theory approximation. 
The flow problem is thus reduced to a system of linear equations the solution of which 
givea the instantaneous pressures on the nodes, the flowrates through the unit cells, 
and the velocities of the menisci. The motion of a ganglion is determined by assuming 
quasi-static flow, taking a small time increment, updating the positions of the 
menisci, and iterating. The behaviour of solitary ganglia is studied under conditions 
of quasi-static displacement (Ca slightly larger than critical), as well as dynamic 
displacement (Ca substantially larger than critical). Shape evolution, rate of flow, 
mode of break-up, and stranding are examined. The stranding and break-up coefficients 
are determined as functions of the capillary number and the ganglion size for a 
100 x 200 sandpack. The dependence of the average ganglion velocity on ganglion size, 
capillary number, viscosity ratio and dynamic contact angle is examined for the 
simple case of motion between straight rows of spheres. It is found, among other 
things, that when po < pw the velocity of ganglia can be substantially larger than 
that of the displacing fluid. 

1. Introduction 
Many important applications involve the displacement of a non-wetting fluid in 

a permeable medium by a wetting one. Gas and oil recovery from reservoir rock, 
irrigation, aquifer formation, imbibition during mercury porosimetry , are examples 
of such applications. In  oil production the objective is to achieve high displacement 
efficiency by inexpensive means. The overall displacement efficiency is decided by 
the sweep efficiency and the microdisplacement efficiency. Here we are concerned 
with certain aspects of microdisplacement efficiency. 

For the sake of brevity, in the rest of this article we will use the term oil instead 
of non-wetting fluid, and water instead of wetting fluid. This places emphasis on the 
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relevance of this work to oil recovery, but the results apply to any other pair of fluids 
with respectively similar properties. 

When a porous medium filled with oil gets invaded by water, only a fraction of 
the oil gets displaced. The reason for this phenomenon is the following. As water 
invades the porous medium, it begins to form tortuous microfingers within the 
territory of the oil. The formation of these microfingers is due to the randomness of 
the pore structure, the interplay between viscous forces and capillary forces, the 
difference in viscosity between the two fluids, the formation of wetting films assisted 
by microroughness on the pore walls, etc. Before long, the growing microfingers begin 
to surround portions of the retreating oil and to disconnect them from the bulk of 
that phase. The disconnected segments of oil are called ganglia. 

The formation of ganglia is a pivotal event. Before becoming disconnected, the oil 
in a ganglion-to-be was assisted in its motion by the capillary pressure. Once 
disconnection has occurred, the capillary pressure strongly opposes further motion 
of the ganglion. As a result, a ganglion gets stranded, at  or near the position where 
it was formed. When the invasion of the water is complete, a large fraction of the 
original amount of oil remains entrapped in the form of ganglia. A review of works 
pertaining to microdisplacement and the formation of ganglia was given recently in 
Payatakes & Dias (1984). A new theoretical simulator of this process was developed 
in a companion publication (Dias & Payatakes 1986). Here, we will focus our 
attention on the behaviour of ganglia, when they get mobilized. 

The mobilization of oil ganglia has been the object of several studies. Melrose & 
Brandner (1974) were the first to propose a mobilization criterion based on the 
competition between capillary pressure and external flow-field pressure. Batycky & 
Singhal (1977) made a careful analysis of the mobilization of a ganglion in a track 
between two rows of uniform spheres, and verified the basic concept behind the theory 
of entrapment and mobilization. Ng, Davies & Scriven (1978) made visualization 
experiments and reported agreement with the Melrose-Brandner criterion. A theor- 
etical study of ganglion mobilization in a sinusoidal tube was made by Oh & Slattery 
(1979). Egbogah & Dawe (1981), Rapin (1980), Hinkley (1982), and Yadav & Mason 
(1  983) reported experimental observations on ganglion motion and entrapment. 
Legait (1981) studied the motion of an oil droplet through a single constriction in 
a long tube, taking into account inertial, viscous and capillary forces. Legait & 
Jacquin (1982) studied the conditions under which an oil droplet passes through a 
square constriction in a long tube and they concluded that the critical Ca value 
depends on the geometry of the constriction and on the viscosity ratio. An 
experimental study of the motion of ganglia in sinusoidal tubes for Ca values of order 
lop2 and higher was made by Olbricht & Leal (1983). 

The behaviour of solitary ganglia and the collective behaviour of large populations 
of interacting ganglia are problems that arise in enhanced oil recovery (Payatakes, 
Ng & Flumerfelt 1980; Ng & Payatakes 1980; Payatakes 1982). They may also arise 
in cases when a porous medium filled with oil gets flooded from the beginning with 
water at high Ca value, say Ca > 5 x lop4. 

Based on experimental observations by Rapin (1980), Payatakes (1982) proposed 
that the motion of ganglia undergoing immiscible displacement can be classified either 
as quasi-static displacement, or as dynamic displacement. The distinction is based on 
the number of downstream menisci of the ganglion that are advancing at any given 
time. If the applied Ca value is slightly larger than the critical value required to 
mobilize the ganglion under consideration, the ganglion advances with only one of 
its downstream menisci at any instant, while one or more of its upstream menisci 
are also in motion. This type of behaviour is called quasi-static displacement. If, on 
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the other hand, the applied Ca value exceeds the critical one substantially, the 
ganglion advances with two or more of its downstream menisci simultaneously. This 
type of behaviour is called dynamic displacement. There are good reasons for making 
this distinction. 

A ganglion undergoing quasi-static displacement has a tendency to get elongated, 
and to align itself with the macroscopic flow direction. However, owing to the 
randomness of the porous medium, it eventually breaks into two daughter ganglia 
(usually unequal), the smaller one of which, or both, may get stranded. Here, the 
mechanism of break-up is usually pinch-off. If a daughter ganglion does not get 
stranded immediately, it  too undergoes quasistatic displacement. The mobilized 
ganglion may also get restranded without breaking up first, either because it meets 
a set of narrow throats, or because it gets stubby, or for both reasons. 

A ganglion in dynamic displacement advances in two or more directions 
simultaneously, and as a result suffers frequent break-ups. This phenomenon is called 
dynamic break-up. In  this way, the ganglion is reduced to many smaller ones, some 
of which may get stranded immediately, while others undergo dynamic displacement 
or quasi-static displacement. The frequency of dynamic break-up per unit length of 
migration is much higher than that of break-up during quasi-static displacement. 
Another, less important, difference is that the tendency of ganglia to become 
elongated and aligned with the macroscopic flow direction is not very pronounced 
during dynamic displacement. 

A theoretical model of the behaviour of solitary ganglia in porous media was 
developed by Ng & Payatakes (1980) and Payatakes, Woodham & Ng (1981). That 
model predicts the ‘steps’ taken by a mobilized ganglion by applying at any given 
stage a ganglion-specific mobilization criterion. That criterion is a generalization of 
the Melrose-Brandner criterion and predicts not only whether another ‘step’ will be 
taken by the ganglion, but also the next position of the ganglion in the network, and 
whether break-up will occur during this step or not. The Ng & Payatakes model 
explains the phenomena of ganglion elongation and alignment with the flow, and 
also predicts the coefficients of stranding and break-up. Its major shortcomings are 
that it applies only to quasi-static displacement and that it has nothing to say about 
rates and the ganglion velocity. It must be noted here that the average ganglion 
velocity is a key parameter in the dynamics of oil-ganglion populations. 

In the present work we present a flow simulator that applies to both quasi-static 
and dynamic displacement, predicts pressure fields and flowrates, and gives the 
velocity of ganglia as a function of geometrical and physical parameters. 

2. Model formulation: boundary conditions 
The simulator used here is the same M that described in Part 1 of this paper (Dias 

& Payatakes 1986). Here we discuss some details of the boundary conditions that 
are of special interest to oil-ganglion flow. 

The absolute permeability, k, of a specified network of randomly sized unit cells 
can be calculated independently, by imposing a constant macroscopic pressure 
gradient and averaging the calculated permeability values obtained from a number 
of realizations (Ng 1980; Dias & Payatakes 1986). 

For a specified value of Cu the magnitude of the corresponding macroscopic 
pressure gradient in a network with one ganglion (or in a very sparsely populated 
network) is given by 

(1) 
-vp = ~ now ca  

k ’  
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where mow is the oil-water interfacial tension. This approximation is valid so long 
as the oil ganglion is small when compared with the network size so that the network 
itself can be considered as virtually oil-free and the presence of the oil ganglion is 
not discernible at  the network boundaries. 

In  setting up the simulation we must specify the size of the network ( N ,  and N,) 
and the macroscopic-pressure-gradient direction. The direction of the macroscopic 
pressure gradient is given by $', which is defined as the angle between the x-axis and 
the direction of the macroscopic pressure gradient. Let us consider two planes normal 
to the macroscopic-pressure-gradient direction (figure 1) .  The pressure drop along the 
network is then given by 

where 

and Pl and Po represent the pressures at planes 1 and 0, respectively. For simplicity, 
Po is given the value zero. The pressures at each boundary node can easily be derived 
using geometrical considerations. For example, the pressures at  locations I, J, M and 
N in figure 1 are given respectively by 

PI = ( -  V P )  Z(Dxy - N I  sin $'), (4a) 

PJ = ( - V P )  Z(Dxy- NJ COS#'), (4b) 

PM =(-VP)E(D,, -N,  sin#'-N, cos$'),  (4c) 

PN = ( - V P )  Z(Dxy - N ,  cos 4' - N ,  sin $'), ( 4 4  

Pl - Po = ( - V P )  ZD,,, 
D,, = N ,  sin #' + N ,  cos #', 

(2) 

(3) 

where N I  and N N  are the number of branches along the y-axis up to the locations 
I and N, respectively, and NJ and N ,  are the number of branches along the x-axis 
up to the locations J and M, respectively. 
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\. 1 = 0.03 s 

I = 0.1 I s 1 = 0.21 s 

FIGURE 2. Stages of the simulated motion of a 12-CEVS ganglion in a network representing a 
100 x 200 sandpack for Ca = 2 x K = 1 ,  and 4' = 45'. 

3. Sample stochastic simulations of ganglion fate: quasi-static and dynamic 
displacements 

All the simulations in this work were done on a network representing a 100 x 200 
sandpack having a porosity of 0.395 and grain sizes ranging from 74 to 149 pm. The 
throat size distribution and other pertinent parameters of the porous-medium model 
were obtained by Payatakes et al. (1980), using the method developed in Payatakes, 
Tien & Turian (1973) and the data reported by Leverett (1941). The experimental 
permeability of this sandpack is k = 3.55 x cm2, and the calculated permeability 
for the two-dimensional network is k = 2.78 x 

The fate of a solitary oil ganglion depends on various physical operational 
parameters, among which the most important are the capillary number, the direction 
of the macroscopic pressure gradient, the size, shape and orientation of the ganglion, 
and the local geometry of the porous medium. The influence of each of these factors 
has been illustrated by Dias (1984). Here we report simulations showing the effects 
of the capillary number and of the direction of the macroscopic pressure gradient 
relative to the axes of the network. 

Consider the simulations shown in figures 2, 3, and 4. In order to isolate the effect 
of the capillary number, all three simulations were performed on the same random 
network, with a viscosity ratio of unity ( K  = l ) ,  perfect wetting conditions 

om2. 
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\A I = 0.12 s 

f = 0.53 s \ -  t = l . Z s  

FIGURE 3. Stages of the simulated motion of as 12-CEVS ganglion in a network representing a 
100 x 200 sandpack for Ca = 4 x K = 1, and q5' = 45'. 

(6, = = O O ) ,  and the direction of the macroscopic pressure gradient set at 
45". 

In  figure 2 the capillary number is set at a value just capable of inducing motion 
(Cu x Ca,,, where Cu,, is the critical capillary number for mobilization of the 
ganglion under consideration). As expected, the ganglion begins to advance with one 
downstream meniscus at a time. The motion is somewhat episodic, in the sense that 
it is characterized by a relatively large period during which the downstream interface 
creeps through a constriction, and a relatively short period during which oil invades 
the downstream chamber - once the interface passes through the constriction. The 
occurrence of a xeron (invasion by oil of a downstream chamber) is always 
accompanied by the occurrence of a hygron (invasion of an upstream chamber by 
water). As the ganglion moves forward it elongates and aligns itself with the direction 
of the macroscopic pressure gradient. A t  some stage of the simulation, an oil thread 
is formed and the ganglion breaks into two daughter ganglia. The smaller ganglion 
gets stranded while the larger one continues to move forward. These observations 
are in close agreement with the characteristics of the quasi-static displacement of 
ganglia described by Payatakes (1982). The mode of break-up observed in this 
simulation, resulting solely from the rupture of an oil thread (pinch-off), is very 

= 
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r = o s  f = 0.25 8 

I =  1.0s I = 2.6 s 

FIGURE 4. Stages of the simulated motion of a~ 12-CEVS ganglion in a network representing a 
100 x 200 sandpack for Cu = lo-$, K = 1, and #' = 45". 

common in quasi-static displacement, and it usually results in two differently sized 
daughter ganglia. 

Figure 3 and 4 show the same ganglion subject now to larger values of Cu. In  the 
simulation shown in figure 3, the capillary number is set at  a value roughly twice 
the critical value for mobilization. The ganglion now advances with two menisci 
simultaneously, thus forming two branches. This type of microdisplacement is called 
dynamic displacement. As the displacement proceeds the ganglion eventually breaks 
into two similarly sized daughter ganglia. This mode of break-up, resulting from the 
simultaneous advance of two or more menisci, is an inevitable consequence of 
dynamic displacement and it is called dynamic break-up (Payatakes 1982 ; Payatakes 
& Dias 1984). An interesting observation on this particular simulation is that, 
although the original ganglion suffers dynamic break-up, the two resulting daughter 
ganglia have elongated forms and move with quasi-static displacement without 
breaking for several subsequent steps. The explanation for this behaviour is that, 
although the capillary number is sufficiently large to induce dynamic displacement 
of the large original ganglion, it is only large enough to induce quasi-static 
displacement of the smaller daughter ganglia. 
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r = o s  I = 0.02 s 

I = 0.19 s t = 0.13 s 

FIGURE 5. Stages of the simulated motion of a 8-CEVS ganglion in a network of 
monosized unit cells for Cu = K = 7, and 9' = 90'. 

In the last case (figure a), Ca is set at a value much higher than Ca,,.The ganglion 
now advances with several menisci simultaneously and breaks into several daughter 
ganglia, some of which get stranded, while the others continue to move on, and, in 
turn, break into other ganglia. Thus, the original ganglion rapidly disintegrates into 
many small ones. It should be noted that, although most of this disintegration is due 
to dynamic break-up, some cases of pinch-off are also observed. 

An important finding is that, whereas the network is macroscopically isotropic for 
one-phase flow (Dias 1984), it  is anisotropic for two-phase flow. Figures 5,  6 and 7 
demonstrate the effects of changing the direction of the macroscopic pressure 
gradient. A network of monosized unit cells is used in all three figures in order to 
remove the effect of randomness from the results. The capillary number is set at 
Ca = 

In  figure 5 the macroscopic pressure gradient is aligned with the longitudinal axis 
of the network, 9' = 90'. Both frontal interfaces advance simultaneously and the 
ganglion develops two prongs. Coalescence of the two prongs is not allowed (it would 
not occur anyway due to the lack of a lateral pressure difference), so the ganglion 
eventually splits into two similar ganglia. 

When 9' = 70" (figure 6), the ganglion tends to elongate in the direction of the 

and the viscosity ratio at  K = 7. 
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t = O s  t = 0.01 s 

1 = 0.12 s t = 0.18 s 

FIGURE 6. Stages of the simulated motion of a 8-CEVS ganglion in a network of 
monosized unit cells for Cu = K = 7, and 4' = 70". 

macroscopic pressure gradient; however, as it moves it finds itself in situations that 
cause pinch-off and dynamic break-up simultaneously. 

Finally, in figure 7, the direction of the macroscopic pressure gradient is set at 
4' = 45'. The ganglion advances with two menisci simultaneously, and breaks into 
two daughter ganglia, which, in turn break again through dynamic break-up, and the 
resulting four ganglia get stranded. 

The implications of these observations for the design of experiments and the 
interpretation of the results thereof are clear. 

4. Stranding and break-up 
4.1. The stranding and the break-up coefficients 

Payatakes et al. (1980) expressed the effects of stranding and break-up on oil-ganglion 
dynamics in terms of the stranding coefficient, A,  and the break-up coefficient, 9. The 
dependence of these coefficients on ganglion size and the capillary number was studied 
in Ng & Payatakes (1980) for the case of quasi-static displacement. Here we will make 
a more detailed and general study. 
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where no is the initial value of n(t, z ;  v), 7 is the corrected time defined as 
Z 

7 = t - -  
u,(v; a,) ’ 

and the stranding and the break-up coefficients, A and q5, are defined as 

A =-L&J 
due to stranding’ 

due to break-up’ 

The number of stranded v-ganglia per unit porous-medium volume at position z 
and time 7 ,  v(z, 7 ;  u )  Av, and the number of v-ganglia that fissioned per unit porous- 
medium volume at position z and time 7 ,  B(z, 7 ;  v) Av, are given by 

assuming again that A and g5 are constant. 
Plotting In (n/no) versus z/Z, a straight line with intercept unity and slope - (A + q 5 )  Z 

is obtained. Similarly, plots of In (vh/Sno) and In (@/&no) versus z/Z give straight lines 
with slope - (A  + q5) Z and intercepts ln (AZ) and In (g5Z), respectively. This linearity is 
a consequence of the assumption that A and q5 are not functions of z and have values 
which are averages over the ensemble of all possible shapes. However, if a ganglion 
elongates as it moves (see figure 2), its probabilities of break-up and stranding are 
reduced, and A and q5 may very well be functions of z. In  such cases the three curves 
ln(n/no) versus z/Z, ln(vZ/Sn,) versus z/Z, and ln(/3Z/Sno) versus z/Z deviate from 
linearity. This effect was first investigated by Payatakes et ad. (1981). That work, 
however, was based on repeated application of the mobilization criterion mentioned 
earlier. Here we make a more detailed analysis based on the network solution of the 
flow problem. 

For a fixed ganglion volume and random initial shapes, many simulations are 
undertaken with the same Ca and K values, in each simulation allowing the ganglion 
to migrate until it either breaks or gets stranded. Superimposing the starting planes 
of all simulations and considering the entire ensemble of results, values of (n/no),  
(vZ/Sno), and (/3Z/Sno) can be determined. To this end, we consider several positions 
along z, and we count the number of moving v-ganglia at each position z, the number 
of stranded v-ganglia left in the interval ( z  - ~ A z ,  z + ~ A z ) ,  and the number of fissions 
of v-ganglia in the same interval. The following variables are readily obtained: 

number of w-ganglia moving at position z 
X =  initial number of w-ganglia , 

9 (12) 

(13) 

Provided that Az is sufficiently small, say (Az -4 Z), the values of x, ($Z/Az), and 
(wZ/Az), can be regarded as the local ‘experimental’ values of (n/no),  (vZ/Sn,), and 
(/lZ/Sn,), respectively. Plotting the logarithms of ($Z/Az) and (wZ/Az) versus z/Z, the 
values of AZ and g5Z may be obtained by simple fitting. 

number of v-ganglia stranded in the interval (z_+iAz) 
$=  initial number of v-ganglia 

number of v-ganglia fissioned in the interval ( z  k ~ A z )  
initial number of v-ganglia 

w =  

12 FLM 164 
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FIQURE 8. Plots of (wl/Az)  and (@/Az), vs. the normalized length of migration, z / l ,  in a 
100 x 200 sandpack, for a 5-CEVS ganglion, K = 7 and ( a )  Ca = ( b )  Cu = 5 x 

0 4.0 8.0 12.0 
Z i l  

100 

wljA2 
or 

SVAz 
lo-' 

10-2 

10-8 

FIQURE 9. Plots of (wl /Az)  and ($ l /Az) ,  us. the normalized length of migration, z/1, in a 100 x 200 
sandpack, for a 210-CEVS ganglion, K = 0.6 and (a )  Ca = loL3; ( b )  Cu = 5 x 10-3. 

Typical results of this study for 5-CEVS and 15-CEVS ganglia are shown in 
figures 8 and 9. In each case the initial shape of the ganglion is chosen randomly from 
among all possible shapes. In figure 9 the plot ($Z/Az) versus z/Z is omitted, since 
too few ganglia were stranded to obtain statistically meaningful values. Inspection 
of these results leads to the following observations: 

- Stranding of ganglia decreases as the capillary number and the ganglion size 
increase. For fixed Ca, hl becomes nil for sufficiently large ganglia. 

- High capillary numbers and large ganglion sizes increase the rate of ganglion 
break-up. 

- For small values of Ca and medium-sized ganglia (w* = 4-7), the curves show 
a significant deviation from linearity, implying the presence of elongation 
effects. 

- As the viscosity ratio, K ,  increases, the rate of stranding increases, whereas 
the rate of break-up decreases. The increase in the rate of stranding is stronger 
than the decrease of break-up. 
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FIGURE 10. Plots of the dimensionless stranding coefficient, hl, and of the dimensionless break-up 
coefficient, $1, 218. the normalized length of migration, z l l ,  in a 100 x 200 sandpack, for 4, 5 and 
7-CEVS ganglia, K = 7 and Ca = 

The first three observations are in accordance with previous observations (Ng & 
Payatakes 1980; Rapin 1980; Payatakes et al. 1981) and with the ganglia velocity 
results reported in the previous section. The fourth observation is a new result. 

In  order to investigate the effects of elongation, the local values of hl and $1 are 
calculated a t  each position z l l .  From simple v-ganglion balances we obtain 

an@, 7; v) 

an@, 7 ;  v) 

cT = - [ 
]due only to stranding) 

1 /3 = -6[ 
due only to breakup' 

Combining (7) and (14), and (8) and (15), we get 

1 g ( z ,  7; v) 
6 n(z, 7;  z )  ' 
1 n(2, 7 ;  v) 
6 n(z, 7 ;  z )  * 

A = -  

# = -  

Recalling that the 'experimental' value of (nln,), (cl6n0), and (/31/1/6n,), are given 
by x, ($ l /Az ) ,  and (wl/Az) ,  respectively, the values of hl and $1 at various positions 
can be calculated from 

(18) A1 = - lG.zlAz at fixed 211, 
X 

wllAz 
X 

$1 = - at fixed z l l .  

Values of A1 and $1 versus z l l  for 4-CEVS, 5-CEVS and 7-CEVS ganglia are plotted 
in figure 10 for Ca = and K = 7. These plots confirm that there exists a 
dependency of both A1 and $1 on length of travel, especially for small ganglia. These 
findings are in accordance with the results reported by Payatakes et al. (1981), except 
that, in their work, the dependence of $1 on zl was not so strong and presented a more 
erratic behaviour. 

12-2 



350 M .  M .  Dias and A .  C .  Payatakes 

Ca 

c) 7.0 x lo-' 
A I .OX 10-3 

0.20 

Y*  

2.0 

$1 

1.5 

1 .o 

0.5 

0 

b) 
Ca 

c) 7 . 0 ~  lo-' 
A 1.0 x 10-8 
+ 5 . 0 ~  lo-' 

5.0 10.0 15.0 20.0 
U* 

FIGURE 11. Plots of (a) the dimensionless stranding coefficient, hl, and ( b )  the dimensionless break-up 
coefficient, $1, vs. the reduced ganglion volume, v*, in a 100 x 200 sandpack, for K = I and various 
Cu values. 

In order to summarize and compare these results, the break-up coefficient and the 
stranding coefficient are plotted versus ganglion size for various capillary numbers 
in figure 11. The plot of A1 is given only for the case of K = 7 due to the scarcity of 
data points in other cases. In general, an increase of the capillary number results in 
an increase of the break-up coefficient, probably due to the increase of dynamic 
break-up. The role of the viscosity ratio in the break-up coefficient is not very clear 
or very strong. It seems from these simulations that, once a ganglion is mobilized, 
its chances of breaking are nearly the same, independently of its viscosity. However, 
this may be an artifact, due to the fact that our criterion for break-up is based on 
a quasi-static analysis which by definition ignores the role of viscosity. Future work 
should try to make improvements in this area. 

Finally, the probability of break-up increases significantly with ganglion size, 
whereas the probability of stranding decreases. As a general observation, solitary or 
non-interacting ganglia moving in random porous media are destined to split into 
smaller and smaller daughter ganglia, which in turn have a high probability of getting 
stranded. This observation is in agreement with the conclusions of Payatakes et al. 
(1980) and Ng & Payatakes (1980). 

4.2. Mode of break-up 
An important parameter in the dynamics of oil-ganglion populations is the break-up 
mode probability, W(w, v) Av, defined as the probability that a moving w-ganglion 
will break into two daughter ganglia, one of which is a v-ganglion. The effect of the 
capillary number on W(w, v)Av is shown in figure 12. The viscosity ratio does not 
seem to affect the outcome of this function in any systematic or appreciable way. 
We make the following observations : 

- For given v*, W(w, o) Av increases as the size of the mother ganglion w 
decreases. This means that small daughter ganglia are more likely to be 
produced from the break-up of small mother ganglia. 

- For low capillary numbers W(w, v)  Av decreases monotonically with v*. This 
means that pinch-off (which predominates for small Ca values) usually 
produces one small daughter ganglion and one larger ganglion. 
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FIQURE 12. Plot of the break-up mode probability, W(w, v) Av, us. the reduced ganglion volume, 
v*, in a 1 0 0  x 200 sandpack, for K = I and Ca = with the mother ganglion reduced ganglion 
volume, w/vcEvs, aa a parameter. The right half of the plot is not shown since it is symmetrical. 

- The probability that a large ganglion will generate a 1 or 2 CEVS daughter 
ganglion decreases slightly as the capillary number increases, whereas the 
probability that the break-up will give daughter ganglia of comparable sizes 
increaws. This is due to the fact that dynamic break-up (which predominates 
at large Cu values) usually produces two daughter ganglia of comparable 
sizes. 

- W(w, v)Av approaches a relatively small asymptotic value for very large 
ganglia (v* 2 15). 

5. Ganglion velocity 
One of the most important parameters in ganglion dynamics is the ganglion 

velocity, u, (Payatakes 1980). Owing to the converging-diverging character and the 
randomness of the porous medium, the velocity of a ganglion varies with time, even 
if the flooding conditions are kept constant. Hence the ganglion velocity is expressed 
in terms of the time-averaged velocity with which the centroid of the ganglion 
migrates downstream, iiz. 

In  the previous section we saw that ganglia moving in random porous media split 
into smaller daughter ganglia frequently. In order to avoid the problem of frequent 
break-up, Hinkley (1982) measured the velocity of ganglia experimentally by placing 
them in rectilinear tracks (formed by packing uniform glass beads), and by applying 
a macroscopic pressure gradient parallel to the tracks. The velocity of a ganglion was 
calculated by dividing the distance travelled by the centroid of the ganglion by the 
time elapsed. Ganglia tend to elongate until a cruising shape is attained. To ensure 
that this elongation effect did not affect the velocity calculations, each ganglion was 
allowed to travel a distance equal to twice its length, before the measurement began. 
From this point on, the ganglion velocity was calculated after the occurrence of each 
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FIQURE 13. Plot of the reduced time-averaged ganglion velocity, u*, v.9. the reduced ganglion 
volume, v*, in a 100 x 200 sandpack for various Cu values. K = 7, Be = e0, = @ = 0". 
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FIQURE 14. Plot of the reduced time-averaged ganglion velocity, u*, 71.9. the reduced ganglion 
volume, v*, in a 1 0 0  x 200 sandpack for various Cu values. K = 1 ,  0, = e0, = @ = 0". 

rheon, and its final value was recorded when the last three measurements converged 
to the same average value. In  the present work we perform a set of theoretical 
calculations under similar conditions. 

In  order to make a first check of the validity of the calculations, a ganglion with 
the same viscosity as that of the water and with a null ganglion-water interfacial 
tension was placed in the network. This is equivalent to tracking a ganglion of 
coloured water being displaced by water. As expected, the average velocity of this 
ganglion was found to be the same as the mean interstitial velocity of the wetting 
phase in a network free of the non-wetting phase, V,, which can be expressed as 
& = VJe. Here, V, is the superficial velocity of the flood, and e is the porosity of the 
porous medium. With this result in mind, the reduced time-averaged ganglion 
velocity is defined as u* = U,/ &. Under creeping-flow conditions, u* is a function of 
Ca, v*, 8, and the geometric parameters defining the porous-medium structure. 
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FIQURE 16. Plot of the reduced time-averaged ganglion velocity, u*, v8. the reduced ganglion 

volume, v*,  in a 100 x 200 sandpack for various Ca values, K = 7, 8, = = q = 10'. 

The simulator developed in this work applies to ganglia with sizes larger than, say, 
2 to 3 CEVS, due to the Washburn-type approximation it adopts. The validity of 
the model was tested by comparing Hinkley's experimental velocities against the 
predicted theoretical velocities. To this end we determined the network parameters 
that pertain to Hinkley's porous medium, and calculated the ganglion velocities by 
applying the network simulator. We found good agreement between experimental 
and theoretical results (Dias 1984; Hinkley, Dias & Payatakes 1986). 

After these tests, we calculated values of u* in a 100 x 200 sandpack for various sets 
of parameter values, figures 13 to 18. These figures show how the ganglion size, the 
capillary number, the viscosity ratio, the equilibrium contact angle, and the existence 
(or absence) of contact-angle hysteresis and the rate-dependency of contact angles 
affect the velocity of ganglia in rectilinear tracks. 

The influences of Ca, K and v* are shown in figures 13 to 15, for the case of perfect 
wetting conditions, namely Be = = Q = 0". We make the following observations: 
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FIQURE 17. Plot of the reduced time-averaged ganglion velocity, u*, vs. the reduced ganglion 
volume, v* ,  in a 100 x 200 sandpack for various Ca values, K = 7 ,  8, = & = 6 = 30". 
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FIQURE 18. Plot of the reduced time-averaged ganglion velocity, u*, vs. the reduced ganglion 
volume, v*,  in a 1 0 0  x 200 sandpack for various Ca values, K = 7 , B e  = lo", q = 11.4", 6 = 0". The 
rate-dependency of the contact angle is shown in the insert. 

- For K > 1, the reduced time-averaged ganglion velocity is smaller than 
unity. This means that the average velocity of the oil is smaller than the 
average velocity of the water. 

- For K < 1 the reduced time-averaged ganglion velocity can be larger than 
unity. This means that the average velocity of the oil can be larger than the 
average velocity of the water. This observation can be explained by 
considering the role of the porous medium. The pressure difference in the 
wetting phase along a ganglion with projected length L,, is of order 
O( V,pw L,/k).  Notice that for linear ganglia the reduced ganglion length, 
Lg/Z, is roughly equal to the reduced ganglion volume. The pressure drop 
inside the ganglion is of the order 0(ez m, Lg/k) .  Neglecting the effect of 
the capillary pressure, the two pressure differences are equal, from which it 
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follows that u* = EU,/ V, = O(pw/po) = O( l / ~ ) ,  or ~ u *  = O( 1). This argument 
is valid when Cu is substantially larger than Cu,,, so that capillary effects 
are negligible. Closer to the critical Cu value, the capillary pressure cannot 
be neglected. Taking capillarity into account we get 

KU* = O(l)-O(kaowAJ/~~pwLg), 
where AJ is a measure of the difference in curvature between the meniscus 
at the nose of the ganglion and the meniscus at the tail of the ganglion. When 
O(kcrowAJ/VfpwL, 4 l) ,  this estimate reduces to KU* = O(1). 

-For fixed values of the reduced ganglion volume, v*, the reduced time- 
averaged ganglion velocity, u*, increases with Cu. In the range of Cu values 
studied and for K < 1, u* seems to tend to an asymptotic value, which 
depends on K but not on Cu. For K > 1, an asymptotic value was never 
reached in the range of Cu values covered in this study (up to 

-For fixed values of Cu that are slightly higher than Cu,,, u* increases 
monotonically with v*, reaching an asymptotic value for v* circa 12 to 15. 
The asymptotic value depends on K. 

- For K 2 1 and fixed Cu, u* tends asymptotically to a constant value (which 
depends on the value of Cu) as v* becomes large (say v* > 10). The 
behaviour of u* for small v* depends on Cu. For relatively small Cu values, 
u* becomes nil (the ganglion gets stranded) for some value of v* that depends 
on Cu. For large Cu values, u* increases as v* decreases and reaches high 
values a t  v* = 2. 

- For K < 1 and fixed Cu, u* tends asymptotically to a constant value (which 
depends on the value of Cu) as v* becomes large (say v* > 15). The value 
of u* decreases monotonically as v* decreases; if Cu is sufficiently small, then 
u* becomes nil at some value of v* that depends on Cu. 

Figures 16 and 17 show the effects of an intermediate wettability on ganglion 
velocity. The viscosity ratio is set at  K = 7, and the contact angles are taken as 
8, = 8: = e = 10" in figure 16 and as Be = % = e = 30" in figure 17. Comparing 
these results with those of figure 13 the following conclusions can be drawn: 

- The critical value for mobilization decreases as Be increases. This, of course, 
is expected. 

- For large values of Cu (say Cu = 5 x the reduced ganglion velocity 
decreases as 8, increases. This could be due to the fact that for fixed v* the 
length of a ganglion decreases as 8 increases. Shorter ganglia experience a 
smaller driving force (i.e. pressure difference from tail to nose). 

= e = 0", the value of 
u* for small ganglia (w* = 2 or 3) is higher than that for large ganglia. This 
difference increases as 8 increases. The reason for this could be the decrease 
of capillary resistance to the flow caused by the reduction in the curvature 
of the menisci. This decrease is more important in the case of small ganglia, 
since for large ganglia the viscous resistance is dominant. 

Figure 18 shows the effect of the contact-angle hysteresis and of the rate-dependency 
of the contact angles. The viscosity ratio is set as the same value as the previous two 
figures, K = 7, and the limiting contact angles are taken as 8, = lo", 0: = 11.4" and 
@ = 0". Here we assume that the advancing contact angle is rate-dependent as 
represented by curve c of figure 19. Comparing the results of figure 18 to those of. 
figure 16 we see that contact-angle hysteresis and rate-dependency do not affect 
substantially the values of u* for large ganglia and/or large Ca values. However, it 

- As seen above, when K > 1, Cu = const. and 8, = 
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FIGURE 19. Plot of the dependence of the dynamic contact angle, 8, on the interfacial velocity, 
ui, for Be = lo", Q = 11.4", q = 0". Class 11 hysteresis. 

should be noted that the critical capillary numbers and the velocities of small ganglia 
may be affected significantly when contact-angle hysteresis and rate-dependency are 
substantial. 

6. Conclusions 
The motion of oil ganglia in porous media is modelled in the present work by using 

a network of unit cells of the constricted-tube type, together with an electrical 
analogue analysis (to calculate the pressure at  the nodes and the flowrates in the unit 
cells) and a set of rules concerning the behaviour of menisci at the nodes. This 
simulation method is an extension and improvement of the method developed by 
Payatakes et al. (1980) and Ng & Payatakes (1980); it  takes into account the 
viscosities of both fluids ; time appears explicitly and flowrates and ganglion velocities 
are calculated readily ; motion of two or more downstream menisci simultaneously, 
which is an important feature of dynamic displacement, is allowed. The earlier 
method had the advantage of producing results with relatively small computational 
effort, and it has been proven to give good results under conditions of quasi-static 
displacement, but it did not consider rates and it did not apply to dynamic 
displacement. 

The main conclusions that can be drawn from the study of the motion of solitary 
oil ganglia are the following: 

- The parameters that affect the fate of solitary oil ganglia are the capillary 
number, Ca, the viscosity ratio, K ,  the advancing and receding contact angles 
(19, and Or, respectively), the ganglion size (expressed in terms of the reduced 
ganglion volume, v*), the local geometry of the porous medium, and the 
orientation of the macroscopic pressure gradient relative to the network. 

- Two different types of displacement are observed, depending on the value 
of the capillary number. If the capillary number is close to the critical value 
for mobilization for a given ganglion, Ca,,, the ganglion moves with only one 
downstream meniscus at  any time (quasi-static displacement). In  this case it 
tends to become elongated and aligned with the direction of flow. While it 
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moves it frequently breaks into daughter ganglia, the smaller ones of which 
quickly get stranded. Break-up is due mostly to pinch-off. Restranding of a 
mobilized ganglion can occur even without break-up. If the capillary number 
substantially exceeds Ca,,, the ganglion undergoes dynamic displacement, 
that is, it may advance with two or more downstream menisci simultaneously. 
The tendency for elongation is much smaller than in the case of quasi-static 
displacement, and the rate of break-up per unit length of travel is much 
higher. Break-up is mainly due to the mechanism of dynamic break-up, even 
though pinch-off is still significant. 

- The rates of break-up and stranding were studied with the simulator and the 
results are expressed in terms of the break-up and stranding coefficients and 
of the break-up mode probability. It is found that the stranding coefficient 
decreased with increasing capillary number. In  contrast, the break-up 
coefficient increases as Ca increases. The viscosity ratio seems to affect the 
break-up coefficient only weakly. For small Cu values the dominant 
mechanism of break-up is pinch-off and the daughter ganglia are usually 
quite unequal. For large Ca values the dominant mechanism is dynamic 
break-up and the daughter ganglia are usually of comparable size. Pinch-off 
is significant, however, even at high Ca values. 

- The ganglion velocity can be expressed in terms of the reduced time-averaged 
ganglion velocity, u*. This velocity is smaller than unity if the viscosity ratio 
is unfavourable (K 2 l), and larger than unity if the viscosity ratio is 
favourable ( K  <: 1) and the ganglion is large. In general, u* increases with 
increasing Ca. For ganglia larger than about 5 chambers, u* increases with 
increasing ganglion size, and for very large ganglia it may reach an 
asymptotic value that depends on Ca and K .  The behaviour of smaller ganglia 
is more complex. If the value of Ca is close to the critical value for 
mobilization, Ca,,, u* increases monotonically with v*. For values of Ca that 
are substantially higher than Ca,,, the velocity of 2- and 3-chamber ganglia 
may be slightly larger than the velocity of larger ganglia. This effect is 
observed in the simulations of this work only for K 2 1. u* is also found 
to depend on the contact angle and to a lesser degree on contact-angle 
hysteresis. As the equilibrium contact angle increases, the critical capillary 
number for mobilization decreases. For Ca substantially larger than Ca,,, 
u* decreases as 8, increases. 

Most of this work was done at the University of Houston, with support from US 
Department of Energy, Grant No. E(40-1)-5075, and a grant from Schlumberger-Doll 
Research. Some simulations were performed at  SDR Center. 
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